

Page 1 of 10

Project information
Project full title European network for developing new horizons for RIs

Project acronym EURIZON

Grant agreement no. 871072

Instrument Research and Innovation Action (RIA)

Duration 01/02/2020 – 31/01/2024

Website https://www.eurizon-project.eu/

Deliverable information
Deliverable no. D5.6

Deliverable title Final report on the software developments

Deliverable responsible CERN

Related Work-
Package/Task

WP5, Task 5.3

Type (e.g. Report; other) Report

Author(s) Lorenzo Valentini, Andre Sailer

Dissemination level Public

Document Version 1

Date 25/09/2023

Download page

Document information
Version no. Date Author(s) Comment

1 19/09/2023 Lorenzo Valentini First draft

2 25/09/2023 Andre Sailer Second draft

Table of Contents
Project information ... 1

Deliverable information .. 1

Document information .. 1

Table of Contents .. 1

Preamble ... 2

1 Introduction ... 2

2 Key4hep Software Stack .. 3

2.1 Integration of iLCSoft ... 5

Deliverable no. DXX.X

Page 2 of 10

3 Distributed Computing with Key4hep and iLCDirac .. 6

3.1 iLCDirac Jobs and Applications ... 6

3.2 Integration of Key4hep Applications in iLCDirac .. 7

3.2.1 Generators ... 8

3.2.2 Delphes, Gaudi, and Treatment of Pythia Cards ... 8

3.3 FCC Transformation Interface ... 8

3.4 Additional iLCDirac Developments ... 9

4 Conclusions .. 9

Preamble

In the first deliverable D5.1 of task 5.3, the status of the software for the SCT (Super Charm Tau factory)

detector was described. The deliverable described the Gaudi-based Aurora framework, and the SCT

specific details of the software developments. The Aurora framework is based on the DD4hep

geometry description, and a podio based event data model (EDM) library. The D5.1 deliverable also

alluded to the plans to integrate more closely with the Key4hep software stack, which is under

development by different communities performing future collider studies, such as CEPC, CLIC, FCC, and

ILC. Following the unprovoked Russian war against Ukraine and the pivot of this project towards

EURIZON, contributions to the SCT specific software framework were ended. Subsequently

developments focused uniquely on the general Key4hep stack and its use in a distributed computing

environment. Therefore, this report describes the Key4hep project, its current development status,

and how it was integrated and tested with the iLCDirac distributed computing tool.

1 Introduction
Detector studies for future experiments require advanced software tools to estimate performance and

optimize their design and technology choices. These advanced software tools must include the

possibility for full or parameterized detector simulation, the reconstruction of tracks and calorimeter

clusters, jet clustering, flavour tagging, and analysis. A combined solution for all these issues should

also allow experiments to navigate seamlessly between different stages of their life cycle: for example,

from parameterized detector studies to find a performance envelope of their experiment to full and

detailed simulation and reconstruction studies to confirm the validity and feasibility of the assumptions

used in the parameterized simulation. The consistency of the software stack also allows experiments

to extract performance parametrisations from detailed simulation studies to create large-scale

samples that are otherwise not feasible for small communities with limited access to computing

resources.

The Key4hep project offers a solution for these use-cases by providing a structured software stack,

which integrates individual packages towards a complete data processing framework for high energy

Deliverable no. DXX.X

Page 3 of 10

physics experiments. The sharing of common components will reduce the overhead faced by different

communities. Moreover, Key4hep aims to provide an easy-to-use product for librarians, who provide

software installations, the developers creating or adapting components, and the end-users. Figure 1

schematically shows the three major ingredients for the project: a processing framework which

connects all the pieces; a way to describe the geometry of the experiments and use the information

for simulation, reconstruction, or analysis; and an event data model to exchange data between the

pieces and for persistency. For Key4hep the processing framework is Gaudi, the geometry information

is provided via DD4hep, and the event data model is provided by EDM4hep and podio.

Figure 1: Main ingredients for the Key4hep project: geometry information, event data information, and a processing
framework

The Key4hep software is jointly developed by many stakeholders from CEPC, CLIC, FCC, ILC, EIC, or the

Muon Collider. Open meetings are held every week. The source code is publicly available on

https://github.com/key4hep. Documentation about the project and how to use it can be found under

https://key4hep.web.cern.ch.

2 Key4hep Software Stack
The Key4hep software stack is based on the Gaudi data processing framework, the EDM4hep event

data model, and the DD4hep detector description toolkit. In addition, the software stack uses

additional libraries or programs for Monte Carlo event generation, such as Whizard or Pythia, the

Geant4 detector simulation toolkit, and the Delphes library for parameterized simulations. All these

libraries, and more basic packages, are built together with the spack package manager.

The functionality that Key4hep provides is built on top of these packages. A core library “k4FWCore”

provides functionality such as reading and writing the EDM4hep files, and common interfaces for other

services. k4gen provides interfaces to Monte Carlo generators and tools for event handling, for

example vertex smearing. k4SimGeant4 contains interfaces to perform Geant4 simulation inside

Gaudi, while k4SimDelphes offers access to Delphes’ parameterized simulations. In addition, there are

packages, such as k4Clue for calorimeter clustering, or k4ACTSTracking for track reconstruction,

providing access to the reconstruction algorithms of CLUE and ACTS respectively. CLUE is a clustering

algorithm implemented by the CMS experiment, and ACTS is “A Common Tracking Software” originally

developed for the ATLAS experiment. The main contribution by EURIZON is the k4MarlinWrapper, that

https://github.com/key4hep
https://key4hep.web.cern.ch/

Deliverable no. DXX.X

Page 4 of 10

allows for the complete integration of functionalities from the iLCSoft environment developed and

used by CLIC and ILC (see the next section).

Figure 2 shows the possible dataflows with the Key4hep software stack. Starting with the events

created by Monte Carlo Generators, one can either perform full simulation and reconstruction, or

parameterized simulation, and use the same analysis in the end in either case.

Figure 2: Possible data flows in the Key4hep software stack

For developers and users, nightly builds of the software are created by the CERN team, and freely

available on the CVMFS file system under /cvmfs/sw.hsf-nightlies.org/key4hep for three different

operating systems: CentOS 7, Ubuntu2204, and Alma9. Releases of the software, which are kept

indefinitely to provide a stable set of components, are also made when requested or when major

developments have been made. These releases are also found on CVMFS under

/cvmfs/sw.hsf.org/key4hep. The software provided on CVMFS is also used for processing on the

computing grid (see Section 3).

Other tasks in WP5 also make use of the Key4hep software stack. For example, the detector geometry

of the drift chamber under development in task 5.5 is implemented in DD4hep. To support the

reconstruction for the drift chamber, the event data model (see Figure 3), was modified to include the

“RawTimeSeries” and “TrackerPulse” data types. The RawTimeSeries is used to store the electronic

pulses induced in drift chamber wires. In the digitisation stage, a RawTimeSeries is converted to a

TrackerPulse, which can then be used for the track reconstruction.

Deliverable no. DXX.X

Page 5 of 10

Figure 3: Details of the EDM4hep event data model.

2.1 Integration of iLCSoft

The re-use of existing tools allows one to perform interesting studies more quickly, rather than develop

and debug software until it is stable enough to use it. One of the major developments for Key4hep was

therefore the MarlinProcessorWrapper. The MarlinProcessorWrapper encapsulates the processors

that are used in the Marlin processing framework (as opposed to Gaudi) of the iLCSoft software stack.

Because the Gaudi configuration is based on the Python programming language, and Marlin is using

XML for this purpose, a converter was developed, which converts Marlin’s XML files into Python based

steering files for Gaudi. Another difference between the iLCSoft and Key4hep software stacks is the

Event Data Model, which in the Marlin case is LCIO instead of EDM4hep. To assemble arbitrary

processing chains between Gaudi- and EDM4hep-native algorithms and those using the

MarlinProcessorWrapper, the event data model must be converted in memory during run-time from

LCIO to EDM4hep and back. This idea is schematically shown in Figure 4. This MarlinProcessorWrapper

on the one hand allows the ILC and CLIC communities to smoothly transition to the Key4hep software

stack, and on the other hand makes the existing tools from iLCSoft available for other communities,

e.g. FCC, with limited overhead. The iLCSoft software chain includes functionality for digitisation, track

reconstruction, particle flow clustering with PandoraPFA, interfaces to FastJet, the LCFIPlus flavour

tagging, and high-level reconstruction tools for Particle ID and kinematic fitting. The

MarlinProcessorWrapper also works with any processor that users might have written for their own

purposes.

Deliverable no. DXX.X

Page 6 of 10

Figure 4: Sketch showing the use of the MarlinProcessorWrapper in a processing chain.

3 Distributed Computing with Key4hep and iLCDirac
The size of the Monte Carlo samples needed for future detector studies makes it necessary to use

distributed computing to access resources that might not be available directly for the participants.

Sophisticated distributed computing tools, such as DIRAC (Distributed Infrastructure with Remote

Agent Control), also offer convenient workload and data management solutions that make the use of

distributed resources more efficient for end-users. DIRAC builds a layer between the users and the

resources, thus offering a homogeneous interface to a heterogeneous set of computing or storage

resources.

For the work that is performed as part of EURIZON WP5, the ILC and FCC Virtual Organisations (VO) of

the European Grid Infrastructure offer access to distributed resources. Both VOs are part of the

iLCDirac instance, originally deployed only for the ILC VO. As part of the iLCDirac extension to DIRAC, a

set of common interfaces is available to all iLCSOFT applications. Recent developments in iLCDirac

added code wrappers to facilitate the management of new workflows originating from Key4hep and

used by the FCC, such as those employing Gaudi and Delphes. Documentation for the use of iLCDirac

can be found under https://ilcdirac-doc.web.cern.ch.

3.1 iLCDirac Jobs and Applications

The guiding principle, at the time of the design of iLCDirac, had been to avoid creating tightly coupled

relationships between jobs and applications. In this framework, an application is independently

definable, separate from any specific job-related property. Furthermore, all applications within

iLCDirac are characterized by a set of elementary properties that uniquely describe them. Each

application has a unique definition, which includes a name and potentially a version. Typically, it

requires a steering file or an option file and generates a log file and at least one data file as output. All

applications within iLCDirac are designed to inherit from a common Application class, see Figure 5.

The Job classes were also structured in a generic fashion, see Figure 6. A foundational Job class,

inherited from the DIRAC Job class, is implemented to allow for the definition of general job

requirements. There are two primary subclasses: UserJob, intended for user-oriented tasks rather than

production tasks, and ProductionJob, designed for submission to the DIRAC Transformation System.

Regardless of job type (UserJob or ProductionJob), the application interface remains consistent,

characterized by a 'job.append' method that accepts an application instance as an argument.

https://ilcdirac-doc.web.cern.ch/

Deliverable no. DXX.X

Page 7 of 10

The Transformation System of DIRAC enables efficient centralised production of large data samples,

such as those needed for detector studies. Centralised productions for a given community usually

consist of a few well-defined workflows, where only a small number of high-level parameters are ever

changed. For example a community will always simulate the same detector, with the same

configuration of the software, and only the event type changes.

Figure 5: GaudiApp, DelphesApp and Whizard inheriting
from the Application base class

Figure 6: UserJob and ProductionJob inheriting from the
Job base class

3.2 Integration of Key4hep Applications in iLCDirac

Thanks to the design of the iLCDirac framework, it was possible to introduce the new Key4hep-based

FCC workflows just by creating the new applications, affecting minimally the rest of the software, with

only a few exceptions. Now, the Key4hep-based applications and the workflows supported by iLCDirac

are those shown in Figure 7 with their output file formats.

Figure 7: Key4hep based workflows implemented in iLCDirac. STDHEP, LHE, HEPMC and EDM4HEP denote the output file
format of the respective applications.

Deliverable no. DXX.X

Page 8 of 10

3.2.1 Generators

Currently, five event generators available in iLCDirac. Of those, Whizard1, KKMC, Bhlumi and Babayaga

can be used directly; Pythia8 can be used inside the Delphes or Gaudi applications, before the

simulation happens.

No developments were needed for the Whizard event generator, which was already interfaced in

iLCDirac. For KKMC, minor adaptations were necessary to use the newer versions that are available in

the Key4hep software stack. The interfaces for two applications used for FCC event generation, Bhlumi

and Babayaga, were added to iLCDirac. These interfaces follow the scheme used by KKMC: they directly

call the generators (available on the Key4hep stack as standalone programs) with a script that is

generated automatically, and which contains the input parameters chosen by the user.

3.2.2 Delphes, Gaudi, and Treatment of Pythia Cards

The possibility of using the Delphes parameterized simulations was added to iLCDirac by creating a

specific application. In particular, the Delphes application uses the standalone executables available

from the k4SimDelphes package: DelphesSTDHEP_EDM4HEP for reading STDHEP inputs,

DelphesROOT_EDM4HEP for reading ROOT files in the Delphes format, DelphesPythia8_EDM4HEP

for running Pythia8 as part of the simulation. Since Pythia8 has LHEF reader capabilities, the last

executable can also be used for running simulations after a generator that produces outputs in the

LHEF format. Only the output of KKMC, which is in the HEPMC format, currently cannot be used for a

Delphes simulation.

Pythia8 is used for some FCC workflows, based on either the Gaudi or Delphes applications. To

generate events, Pythia8 requires, among other inputs, a so-called Pythia Card, containing information

about the specific generation process. At the submission of a workload, Pythia cards will be read from

the local directory of the user running the job, or, if not present, retrieved from CVMFS. To ensure that

the generation process is consistent with the metadata of the job, the content of the card is checked

and compared to the metadata and with the permitted values of the random seeds.

The Gaudi application already existed at the beginning of the project. In principle, it can support any

Gaudi workflow, but this happens according to the available steering files. However, the treatment of

Pythia cards was aligned with that used also for the Delphes application.

These developments to support different Monte Carlo generators were necessary for their convenient

use in a distributed environment. When a user submits many jobs for a Monte Carlo generator, the

iLCDirac system ensures that each job will use a unique seed for the random number generator, and

that the output files will have different names. This ensures that the user does not have to worry about

accidentally creating the same file with name and content in each job.

3.3 FCC Transformation Interface

Besides the applications used in the FCC transformation workflows, also the convention for the storage

of the output files was implemented. It was decided that FCC productions would save their outputs

using paths that follow a logic slightly different from that used in the ILC or CLIC transformations. They

follow the convention:

1 Whizard stands for: W, HIggs, Z And Related Decays

Deliverable no. DXX.X

Page 9 of 10

/fcc/<initial_state>/<campaign>/<energy>/<process_and_final_state>[/<detector>]/<type>/DiracProdID

This required differentiating between FCC and ILC transformations in the ProductionJob class, where

the output paths are decided.

To configure the transformations for the FCC community, the dirac-fcc-make-transformations

command was implemented. This command allows the production managers of FCC to define the high-

level parameters, such as the event type or detector model, and the chosen workflow to create the

large-scale centralised productions. Figure 8 shows an example how the configuration for

transformation looks like. Usually the production manager would provide different

generatorSteeringFile values which contain the event type definition, keeping the rest of the options

constant. In this example the detector is defined by the DetectorCard set for the DelphesApp.

Figure 9 shows the speed with which the 5000 requested jobs are run. First jobs are “Waiting” (blue),

going in to the “Running” (beige) when resources are available, ending up in “Done” (green) or “Failed”

(red). The DIRAC transformation system takes care 3re-submitting any failed job so that exactly 5000

successful jobs, and thus output files, will be provided, for example.

Figure 8: Partial configuration for an FCC transformation

Figure 9: Job execution for an FCC transformation.
Percentages are based on area, not fraction at the end.

3.4 Additional iLCDirac Developments

To enable a simpler use of the Key4Hep nightly builds, which change their location every night (due to

the date or a hash or both in the path of the files), it was necessary to base the path of the detectors

on the K4GEO environment variables, instead of storing the complete path to the detector. This allows

the user to pick any nightly build, and iLCDirac will automatically obtain the correct detector locations.

4 Conclusions
The contributions of the EURIZON WP5 Task 5.3 to the Key4hep software stack are extremely valuable

to preserve proven functionality from iLCSoft for future detector studies. The k4MarlinWrapper is an

essential piece of the Key4hep project which allowed its easy adoption by the CLIC community and

provides core functionality used by the FCC and other communities. The developments to integrate

Key4hep into the iLCDirac distributed computing environment will further allow the wide exploitation

of the Key4hep software, and support detector studies through its ease-of-use and wide-ranging

Deliverable no. DXX.X

Page 10 of 10

transnational access to computing and storage resources. The development of FCC workflows on

iLCDirac has progressed, and iLCDirac has already been used to produce real data for FCC generation

and simulation. The natural evolution of this project will be the addition of new workflows and the

completion of the workflows that are still unfinished.

